Antiinflammatory, nonsteroid analgesics (NSAID)

Drugs that relieve mild to moderate pain, lower body temperature in fever, reduce inflammatory effects. No narcotic effect.

Many of them influence the prostaglandin system, inhibit COX enzymes.

- Salicylic acid derivatives
- Aniline derivatives
- 3-Pyrazoline-5-one derivatives
- 3,5-Pyrazoline derivatives
- Anthranilic acid derivatives
- Aryl acetic and propionic acid derivatives
- Sulfonamide and other derivatives

Salicylic acid derivatives

- Medicines derived from willow trees (*Salix* sp.) and other salicylate-rich plants dates back to ancient Sumer.
- Leroux isolated salicin from willow bark (1827)
- Salicylic acid first synthesis Piria, 1838, prepared from wintergreen (*Gaultheria*) oil, Cahours, 1844, from spirea plants, etc.
- Acetylsalicylic acid: prepared by Gerhardt, 1853, pharm. activity Hoffmann, 1899 (→ Aspirin)

Synthesis

Kolbe-synthesis (industrial) for Phenyl-carbonate Na-salt

- Phenyl-carbonate Na-salt
- Kolbe-synthesis
- 125 °C
- 200 °C
- CO₂
- 4-Hydroxy-benzoic acid
- Para-ben
- Preservatives

Derivatives of salicylic acid

- Acetylsalicylic acid
- Methyl salicylate
- Salicylamide

Salicylic acid

- Acidum salicylicum
- Sodium salicylate
- Natrii salicylas

- Antipyretic and antirheumatic properties.
- Quite toxic for internal use (gastric irritation, sometimes allergy).
- Topical application in dermatology → ingredient in many skin-care products for the treatment of acne, psoriasis, calluses, corns, keratosis pilaris, and warts, shampoos used to treat dandruff ← causing the cells of the epidermis to slough off.
- Food preservative (to inhibit moulds). Not used in food industry anymore.
- Analytic: Blue-lilac complex formation with Fe(III) salts.
Salicylic acid derivatives

Methyl salicylate
Methylis salicylas

Applied locally in ointments to treat rheumatic pains.

Phenyl salicylate
Salol

Used in combinations as a mild urinary tract antiseptic and anagesic; sometimes in toothpastes.

Acetylsalicylic acid
Acidum acetylsalicylicum
Aspirin®, etc.

2-(acetyloxy)benzoic acid

Introduced into medicine in 1899.
Used as an antipyretic, analgesic and antirheumatic (~0.5 g/tablet)
Allergic reactions are possible
Number of proprietary combinations to counteract its acidic properties (pKa = 3.5), GI side effects: NaHCO₃, CaCO₃, Al-hydroxide, Mg-trisilicate, etc.
New use: inhibits thromocyte aggregation in small doses.

Metabolism

Acetylsalicylic acid

Gluconic acid, ~5-10%
Salicylic acid, ~70%
Salicyluric acid, ~75%
Gentisic acid, 1%

Aniline derivatives

Cahn & Hepp (1886): aniline and acetanilide with powerful antipyretic properties. Very toxic.
4-OH derivatives are considerably less toxic.
They return feverish conditions to normal, normal body temperature is not affected.
No anti-inflammatory properties.
Acting centrally: pain impulses are intercepted in the hypothalamus.

Phenacetin - Once very popular, now it is banned because of adverse effects. (renal toxicity, carcinogenic in animals)
Paracetamol

- Long known compound, used in medication since 1955.
- Analgesic and antipyretic action similar to those of aspirin, but not effective anti-inflammatory agent.
- Very commonly used for the relief of fever, headaches, etc.
- Often used in nonprescription combinations for cold and flu medications.
- Mechanism of action still unclear. a) Influences the COX family of enzymes without having anti-inflammatory effect; b) also modulates the endogenous cannabinoid system.
- Adverse effects: liver failure on long overdose. Rarely acute renal failure.

Synthesis

\[
\begin{align*}
\text{Nitrophenol} & \rightarrow \text{Amino-phenol} \\
\text{Paracetamol} & \rightarrow \text{Acetaminophen}
\end{align*}
\]

Paracetamol (INN)
Paracetamolum
Acetaminophen (USAN)
Tylenol®, Panadol®, etc.
4-Acetylamino-phenol

Biotransformation

Metamizole Na
Metamizolum natricum (Novamidazophenum)
Analgin®, Novalgin®, etc.

Pyrazolin-3-one derivatives

- Antipyrine discovered by Ludwig Knorr (1884), used since 1887.

Pyrazolin-3-one derivatives

- Phenazone
 Phenazonum (Antipyrin)
 2,3-Dimethyl-1-phenyl-1,2-dihydropyrazol-5-one

Pyrazolin-3-one derivatives

- Aminophenazone
 Aminophenazonum (Pyramidon)
 Used only externally (e.g. eardrops)

Pyrazolin-3-one derivatives

- Propyphenazone
 Propyphenazonum (Sardion® (component))
 Metamizole Na
 Metamizolum natricum (Novamidazophenum)
 Analgin®, Novalgin®, etc.
Metamizole, novamidazophen

- In use since 1922
- Very commonly used in many countries as a powerful painkiller and fever reducer.
- Side effect: small risk of causing severe agranulocytosis → banned or restricted in many countries, while freely available in others.

Synthesis

Phenylbutazone

- Slightly acidic compound because of enolization.
- Anti-inflammatory and analgesic, main uses: gouty arthritis, spondylitis, tendinitis, musculoskeletal sprain, overuse injuries, etc.
- Side effects similar to the other pyrazolones (rare, but serious suppression of white blood cell production and aplastic anemia.)

Phenybutazone

- Synthesis:
Biotransformation:

\[\text{Phenyldiazene} \rightarrow \text{Oxaphenylphenacene active metabolite} \]

Azapropazone

Azapropazonum

Rheumox®

- Less toxic than the previous ones.
- Acute gout, inflammation of joints, spondylitis, etc.
- Not to be used: blood disorders, peptic ulcers, kidney problems.

Structural relations:

Non-steroidal anti-inflammatory anthranilic acid derivatives

Mefenamic acid

Acidum mefenamicum

Ponstel®, Ponstan®

2-(2,3-dimethylphenylamino)benzoic acid

- Used to relieve mild to moderate pain, including menstrual pain; arthritis, spondylitis, tendinitis, musculoskeletal pains.

Niflumic acid

Acidum niflumicum

- Very commonly used NSAID since 1965 to reduce fever, pain, stiffness, and swelling.
- Nonselective inhibitor of cyclooxygenase (COX) 1 and 2.
- Side effects: gastric distress and headache.

Diclofenac sodium

Diclofenac natrium

Cataflam®, Diclac®, Flector®, Voltaren®

2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid Na-salt

- Widely used to reduce inflammation and as an analgesic reducing pain in musculoskeletal complaints, arthritis, ankylosing spondylitis or acute injury; pain management in case of kidney stones and gallstones.
- Often applied as gel for osteoarthritis etc.
- Mode of action is inhibition of prostaglandin synthesis by inhibition of COX.
- Most common side effects: gastrointestinal complaints.
Synthesis

Biotransformation

Hydroxylation and glucurinide formation

2-Arylpropionic acid derivatives

- Used for relief of symptoms of arthritis, primary dysmenorrhea, fever, headache, etc.
- (S)-(+)-ibuprofen (dexibuprofen) is the biologically active isomer. In vivo isomerase enzyme converts R to S → not necessary to use pure R isomer.

All of these are similar to ibuprofen
Naproxen (sodium)
Naproxenum (natricum)
Aleve®, Apranax®, Napmel®, Naprosyn®

- Commonly used to reduce pain resulting from osteoarthritis, rheumatoid arthritis, gout, ankylosing spondylitis, injury
- Adverse effects: disturbances in the GI tract.

Synthesis

Sulfonamides

Meloxicam
Meloxicamum
Movalis®, Melox®

Celecoxib
Celebrex®
4-(5-(4-methylphenyl)-3-trifluoromethyl)-1H-pyrazolo[1,5-a]pyrimidin-1-yl-sulfonamide

- Sulfonamide derivatives are similar to the previous ones (rheumatoid and osteoarthritis, primary dysmenorrhoea, postoperative pain), but with considerably longer plasma half-life.
Other anti-inflammatory, antirheumatic and gout drugs

Gout - hyperuricemia

- Gout (metabolic arthritis): overproduction and/or decreased clearance of uric acid → buildup of uric acid, deposition of crystals in the joints → inflammatory reaction.

- Allopurinol is also an inhibitor of the enzyme (rapid oxidation, very slow excretion).

- Oxypurinol is also an inhibitor of the enzyme (rapid oxidation, very slow excretion).

- Increases the renal excretion of uric acid

- Precursor for glycosaminoglycans → a major component of joint cartilage. Supplemental glucosamine may help to rebuild cartilage and treat arthritis.

Thiols and gold compounds

- Disodium aurothiomalate

- Auranofin

- D-penicillamine

- Gold salts can decrease the inflammation of the joint lining (probably by inhibiting lymphocyte proliferation, lysosomal enzyme release)